

STRUCTURAL CALCULATIONS

Vaney Shinde Residence 4207 W Mercer Way, Mercer Island, WA 98040

Studio Ectypos 4212 W Mercer Way, Mercer Island, WA 98040

June 24, 2020

Supplemental Calculations – Intake comments

Vaney Shinde - Footing Loads & Tribs

Foundations are structurally acceptable for the loading below, including 5 psf wet snow surcharge.

Load	Мар	DL (psf) LL (psf)	SL (psf)*	
Roof,	typ	15		30	*
Floor	s, typ	15	40		
Deck	S	15	60		

Includes 5 psf surcharge for low slope roof

Case 1			Walls		Net loads		D+L	D+S	D+0.75(L+S)
		Trib (ft)	DL (plf)	DL (plf)	LL (plf)	SL (plf)	(plf)	(plf)	(plf)
	Roof	11.5	141	314		345			
	Upper	11.5	134	306	460				
	Main	11.5		173	460				
	Σ			792	920	345	1712	1137	1741
Case 2			Walls		Net loads		D+L	D+S	D+0.75(L+S)
		Trib (ft)	DL (plf)	DL (plf)	LL (plf)	SL (plf)	(plf)	(plf)	(plf)
	Roof	8.0	141	261		240			
	Upper	9.5	134	276	380				
	Main	9.5	146	289	380				
	Σ			826	760	240	1586	1066	1576
Case 3			Walls		Net loads		D+L	D+S	D+0.75(L+S)
		Trib (ft)	DL (plf)	DL (plf)	LL (plf)	SL (plf)	(plf)	(plf)	(plf)
	Roof	12.0	141	321		360			
	Upper	7.5	134	246	300				
	Main	0.7		10	27				
	Σ			577	327	360	904	937	1092
Case 4			Walls		Net loads		D+L	D+S	D+0.75(L+S)
		Trib (ft)	DL (plf)	DL (plf)	LL (plf)	SL (plf)	(plf)	(plf)	(plf)
	Roof	7.5	141	254		225			
	Upper	0.7	134	144	27				
	Main	0.7		10	27				
	Σ			407	53	225	460	632	616
Case 5			Walls		Net loads		D+L	D+S	D+0.75(L+S)
		Trib (ft)	DL (plf)	DL (plf)	LL (plf)	SL (plf)	(plf)	(plf)	(plf)
	Roof	12.0	141	321		360			
	Upper	1.3	134	154	80				
	Main	1.3	60	80	80				
	Σ			555	160	360	715	915	945
Case 6			Walls		Net loads		D+L	D+S	D+0.75(L+S)
		Trib (ft)	DL (plf)	DL (plf)	LL (plf)	SL (plf)	(plf)	(plf)	(plf)
	Roof	2.0	141	171		60			
	Upper	0.7	134	144	40				
	Main	4.5	60	128	270				
	Σ			442	310	60	752	502	720
Case 7			Walls		Net loads		D+L	D+S	D+0.75(L+S)
		Trib (ft)	DL (plf)	DL (plf)	LL (plf)	SL (plf)	(plf)	(plf)	(plf)
	Roof	4.0	141	201		120			
	Upper	4.0	134	194	160				
	Main	4.0		60	160				
	Σ			455	320	120	775	575	785

Vaney Shinde - Footing Loads & Tribs

Case 8			Walls		Net loads		D+L	D+S	D+0.75(L+S)
		Trib (ft)	DL (plf)	DL (plf)	LL (plf)	SL (plf)	(plf)	(plf)	(plf)
	Roof			0		0			
	Upper	12.0	134	314	720				
	Main		1219	1219	0				
	Σ			1532	720	0	2252	1532	2072
Case 9			Walls		Net loads		D+L	D+S	D+0.75(L+S)
		Trib (ft)	DL (plf)	DL (plf)	LL (plf)	SL (plf)	(plf)	(plf)	(plf)
	Roof	2.0	141	171		60			
	Upper	10.0	134	284	400				
	Main	14.5	60	278	670				
	Σ			732	1070	60	1802	792	1580

SIMPSON

Strong-

Anchor Designer™ Software Version 2.8.7094.0

Company:	Date:	6/22/2020
Engineer:	Page:	1/5
Project:		
Address:		
Phone:		
E-mail:		

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place Material: AB Diameter (inch): 0.875 Effective Embedment depth, h_{ef} (inch): 12.000 Anchor category: -Anchor ductility: Yes h_{min} (inch): 14.38 C_{min} (inch): 5.25 S_{min} (inch): 5.25

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB7 (7/8"Ø)

Project description: Location: Fastening description:

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 15.00 State: Cracked Compressive strength, f_c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: No Build-up grout pad: No

SIMPSON

Strong-I

Anchor Designer™ Software Version 2.8.7094.0

Company:	Date:	6/22/2020
Engineer:	Page:	2/5
Project:		
Address:		
Phone:		
E-mail:		

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (c) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:

N_{ua} [lb]: 8500 V_{uax} [lb]: 0 V_{uay} [lb]: 0

Company:	Date:	6/22/2020
Engineer:	Page:	3/5
Project:		
Address:		
Phone:		
E-mail:		

<Figure 2>

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

IPSON	Anchor Docignor TM	Company:	Date:	6/22/2020
		Engineer:	Page:	4/5
ong-Tie	Version 2.8.7094.0	Project:		
8		Address:		
		Phone:		
		E-mail:		

3. Resulting Anchor Forces

SI

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (lb)
1	8500.0	0.0	0.0	0.0
Sum	8500.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 8500

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
26795	0.75	20096	_

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

$N_b = 16\lambda_a \sqrt{f'_a}$	chef ^{5/3} (Eq. 17.4.)	2.2b)							
λa	f'c (psi)	h _{ef} (in)	N _b (lb)						
1.00	2500	12.000	50318						
$0.75\phi N_{cb}=0$).75φ (A _{Nc} / A _{Nco}) $\Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} \Lambda$	l _b (Sec. 17.3.1	& Eq. 17.4.2.1a	ı)				
A_{Nc} (in ²)	A_{Nco} (in ²	c _{a,min} (in)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	ϕ	0.75 <i>¢N₅</i> (lb)	
768.75	1296.00	10.00	0.867	1.00	1.000	50318	0.75	14551	
6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)									
$0.75\phi N_{pn} = 0.75\phi \Psi_{c,P} N_p = 0.75\phi \Psi_{c,P} 8A_{brg} f_c$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)									

$\Psi_{c,P}$	Abrg (in ²)	f'c (psi)	ϕ	0.75 <i>¢Npn</i> (lb)
1.0	4.07	2500	0.70	42683

Company:	Date:	6/22/2020
Engineer:	Page:	5/5
Project:		
Address:		
Phone:		
E-mail:		

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	8500	20096	0.42	Pass
Concrete breakout	8500	14551	0.58	Pass (Governs)
Pullout	8500	42683	0.20	Pass

PAB7 (7/8"Ø) with hef = 12.000 inch meets the selected design criteria.

12. Warnings

- Per designer input, ductility requirements for tension have been determined to be satisfied - designer to verify.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

SIMPSON

Strong-

Anchor Designer™ Software Version 2.8.7094.0

Company:	Date:	6/22/2020
Engineer:	Page:	1/5
Project:		
Address:		
Phone:		
E-mail:		

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

 $\begin{array}{l} \mbox{Anchor type: Cast-in-place} \\ \mbox{Material: AB} \\ \mbox{Diameter (inch): 1.000} \\ \mbox{Effective Embedment depth, } h_{ef} (inch): 12.000 \\ \mbox{Anchor category: -} \\ \mbox{Anchor ductility: Yes} \\ \mbox{hmin (inch): 14.63} \\ \mbox{Cmin (inch): 6.00} \\ \mbox{Smin (inch): 6.00} \end{array}$

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB8 (1"Ø)

Project description: Location: Fastening description:

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 15.00 State: Cracked Compressive strength, f_c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: No Build-up grout pad: No

SIMPSON Strong-Tie

Anchor Designer™ Software Version 2.8.7094.0

Company:	Date:	6/22/2020
Engineer:	Page:	2/5
Project:		
Address:		
Phone:		
E-mail:		

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (c) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

Service level loads:

	D	E	Strength level loads
Na [lb]:	-506	12000	11545
V _{ax} [lb]:	0	0	0
Vay [lb]:	0	0	0

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

Company:	Date:	6/22/2020
Engineer:	Page:	3/5
Project:		
Address:		
Phone:		
E-mail:		

<Figure 2>

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

IPSON	Anchor Dosignor TM	Company:	Da	ate:	6/22/2020
	Anchor Designer 11	Engineer:	Pa	age:	4/5
ong-Tie	Sonware	Project:			
8	Version 2.8.7094.0	Address:			
		Phone:			
		E-mail:			

3. Resulting Anchor Forces

SI

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (lb)
1	11545.0	0.0	0.0	0.0
Sum	11545.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 11545

Resultant compression force (lb): 11343

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
35150	0.75	26363	

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

$N_b = 16\lambda_a \sqrt{f'_b}$	chef ^{5/3} (Eq. 17.4.	.2.2b)						
λa	f'c (psi)	h _{ef} (in)	N _b (lb)					
1.00	2500	8.000	25600					
$0.75\phi N_{cb} = 0$).75φ (A _{Nc} / A _{Ncc}) $\Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} \Lambda$	<i>I</i> _ℓ (Sec. 17.3.1	& Eq. 17.4.2.1a	a)			
A_{Nc} (in ²)	A_{Nco} (in ²	c _{a,min} (in)	$\Psi_{ed,N}$	Ψc,N	Ψ _{cp,N}	N _b (lb)	ϕ	0.75 <i>¢Ncb</i> (lb)
507.50	576.00	10.00	0.950	1.00	1.000	25600	0.75	12053
6. Pullout S	trength of An	<u>chor in Tensio</u>	<u>n (Sec. 17.4.3</u>	Ð				
$0.75\phi N_{pn} = 0$	$0.75\phi \Psi_{c,P} N_P = 0$.75 $\phi \Psi_{c,P} 8 A$ brg $f'c$	(Sec. 17.3.1, E	q. 17.4.3.1 & 1	7.4.3.4)			

$\Psi_{c,P}$	Abrg (in ²)	f'₀ (psi)	φ	0.75 <i>¢Npn</i> (lb)
1.0	5.15	2500	0.70	54117

Company:	Date:	6/22/2020
Engineer:	Page:	5/5
Project:		
Address:		
Phone:		
E-mail:		

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	11545	26363	0.44	Pass
Concrete breakout	11545	12053	0.96	Pass (Governs)
Pullout	11545	54117	0.21	Pass

PAB8 (1"Ø) with hef = 12.000 inch meets the selected design criteria.

12. Warnings

- Per designer input, ductility requirements for tension have been determined to be satisfied - designer to verify.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.